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Skew Bracoids

Definition

A skew (left) bracoid is a 5-tuple (G , ·,N, ⋆,⊙), where (G , ·) and (N, ⋆)

are groups and ⊙ is a transitive action of G on N for which

g ⊙ (η ⋆ µ) = (g ⊙ η) ⋆ (g ⊙ eN)
−1 ⋆ (g ⊙ µ),

for all g ∈ G and η, µ ∈ N.

We will assume everything is finite.

We will frequently write (G ,N,⊙), or even (G ,N), for (G , ·,N, ⋆,⊙).

We will refer to (N, ⋆) as the additive group and (G , ·) as the
multiplicative or acting group.

We will use S for StabG (eN).
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The γ-function

Definition/Proposition

Let (G ,N,⊙) be a skew bracoid and g ∈ G . The map γ : G → Perm(N)

given by
γ(g)η = (g ⊙ eN)

−1(g ⊙ η)

is in fact a group homomorphism with image contained in Aut(N).

We call this map the γ-function of the skew bracoid.

Definition

Let (G ,N,⊙) be a skew bracoid. A subgroup M of N is a left ideal of

(G ,N) if and only if γ(g)µ ∈ M for all g ∈ G and all µ ∈ M. When M is

also normal in N, M is an ideal of (G ,N).
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Skew Bracoids in the Holomorph

Proposition

Let N be a group. We have a correspondence between

skew bracoids (G ,N,⊙),

and transitive subgroups A of Hol(N).

Sketch Proof.

Let (G ,N,⊙) be a skew bracoid. The image of the map Γ : G → Hol(N)

given by g 7→ (g ⊙ eN , γ(g)) is a transitive subgroup of Hol(N).

Conversely any transitive subgroup A of Hol(N) can be packaged up with

N itself to form a skew bracoid (A,N,⊙), with all the obvious

operations.
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Strength

Recall that passing to the holomorphs kills off any kernel in the action,

leaving the action faithful and the skew bracoid reduced.

Proposition

Let B = (G ,N,⊙) and B′ = (G ′,N,⊙′) be reduced skew bracoids,

corresponding to A and A′ respectively in Hol(N). We have that B and B′

are isomorphic as skew bracoids if and only if A is conjugate to A′ via an

automorphism of N.
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Some Familiar Concepts Re-framed

Let (A,N) be a skew bracoid with A ⊆ Hol(N).

The stabiliser StabA(eN) is precisely the purely automorphism

elements of A, we denote this SA.

Let [η, α] ∈ A and µ ∈ N. We have

γ([η,α])µ = ([η, α]eN)
−1([η, α]µ)

= η−1ηα(µ)

= α(µ),

so the image of γ consists of the automorphisms of N that appear in

an element of A.

A left ideal is then a subgroup M of N such that the automorphisms

α ∈ γ(A) ⊆ Aut(N) restrict to automorphisms of M.
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The Various Correspondences

Let L/K be a finite, separable extension of fields with Galois closure E .

Let G = Gal(E/K ) and S = Gal(E/L), and X = G/S .

HGS on L/K N ∈ Perm(X ) Skew bracoids

Transitive subgroups A of Hol(N)

E [X , ⋆](G ,·) ←→ (G , ·,X , ⋆,⊙)
à la Stefanello and Trappeniers

G-P η 7→ η−1[ē]η 7→ η−1[ē]

ρ⋆(ḡ)←[ ḡ

Γ
Byott’s Translation*
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The Hopf-Galois Correspondence

Again, let L/K be a finite, separable extension of fields with Galois closure

E . Let G = Gal(E/K ) and S = Gal(E/L), and X = G/S .

Theorem

Suppose E [X , ⋆]G is a Hopf-Galois structure on L/K , corresponding to the

skew bracoid (G ,X ,⊙). Let G ′ be a subgroup of G , containing S , the

following are equivalent

EG ′
appears in the image of the HGC for E [X , ⋆]G ,

G ′ ⊙ eN is a left ideal of (G ,X ,⊙).

It is already well known that if the structure is almost classical then the

HGC is surjective, but other results in the separable case are scarce.
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And in the Holomorph?

Translating “G ′ ⊙ eN is a left ideal of (G ,X ,⊙)” to our holomorph

formulation with A = Γ(G ) and A′ = Γ(G ′), we would be asking whether

A′eN is a subgroup of N,

for which the elements of γ(A) ⊆ Aut(N) restrict to automorphisms

of A′eN .
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Qualitative Results

Hopf-Galois Structure Skew Bracoid Holomorph

Almost classical G ∼= H ⋊ S A ∼= B ⋊ SA

extension

Almost classical Almost classical [N, id ] ⊆ A

structure

EG ′
in image G ′ ⊙ eN A′eN ≤ N,

of HGC left ideal γ(A) ⊆ Aut(A′eN)
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An Example

Let N = ⟨σ, τ : σp = τq = e, τσ = στ⟩ ∼= Cpq with p, q odd primes and

p = 2q + 1. Let α, β, γ, δ be generators for Aut(N) where α, β fix τ ; δ, γ

fix σ; and ord(α) = q, ord(β) = 2, ord(γ) = 2r , ord(δ) = s (q − 1 = 2r s).

Order Parameters Group

(1) 2c+1dpq2 0 ≤ c ≤ r , d | s N ⋊ ⟨α, β, γ2r−c
, δs/d⟩

(2) 2cdpq2 0 ≤ c ≤ r , d | s N ⋊ ⟨α, γ2r−c
, δs/d⟩

(3) 2cdpq2 1 ≤ c ≤ r , d | s N ⋊ ⟨α, βγ2r−c
, δs/d⟩

(4) 2c+1dpq 0 ≤ c ≤ r , d | s N ⋊ ⟨β, γ2r−c
, δs/d⟩

(5) 2cdpq 0 ≤ c ≤ r , d | s N ⋊ ⟨γ2r−c
, δs/d⟩

(6) 2cdpq 1 ≤ c ≤ r , d | s N ⋊ ⟨βγ2r−c
, δs/d⟩

(7) 2pq 1 ≤ t ≤ q − 1 ⟨σ, [τ, αt ]⟩⋊ ⟨β⟩
(8) pq 1 ≤ t ≤ q − 1 ⟨σ, [τ, αt ]⟩
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The Tricky Ones

Order Parameters Group

(8) pq 1 ≤ t ≤ q − 1 ⟨σ, [τ, αt ]⟩

Let A be as in (8). The proper subgroups of A are then {[e, id ]}, ⟨σ⟩,
⟨[τ, αt ]⟩ and ⟨[σiτ, αt ]⟩ for 1 ≤ i < p.

Taking A′ = ⟨[στ, αt ]⟩ and writing σg for α(σ), we get

A′eN =
{
σ
Σk−1
j=0 g

j

τk
∣∣ 1 ≤ k ≤ q

}
which is not a subgroup of N. Hence the Hopf-Galois correspondence is

not surjective.
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The Tricky Ones

Order Parameters Group

(7) 2pq 1 ≤ t ≤ q − 1 ⟨σ, [τ, αt ]⟩⋊ ⟨β⟩

With A as in (7) however, we are forced to include ⟨β⟩ = SA in our A′.

This β allows us to disentangle a power of σ from [σiτ, αt ] so that we

would end up with the whole of A. The proper subgroups of A containing

⟨β⟩ are then ⟨β⟩, ⟨σ⟩⋊ ⟨β⟩, ⟨[τ, αt ]⟩⋊ ⟨β⟩.

In (7) then, the N parts of each possible A′ form subgroups of N, and any

automorphisms will naturally restrict to these subgroups. Hence the

Hopf-Galois correspondence is surjective.
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Thank you for your attention!
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