Skew Bracoids in the Holomorph

Isabel Martin-Lyons

joint work with Paul Truman

Keele University, UK

7th of September 2023

Definition

A skew (left) bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$, where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu),$$

for all $g \in G$ and $\eta, \mu \in N$.

- We will assume everything is finite.
- We will frequently write (G, N, \odot) , or even (G, N), for $(G, \cdot, N, \star, \odot)$.
- We will refer to (N, ⋆) as the additive group and (G, ·) as the multiplicative or acting group.
- We will use S for $\operatorname{Stab}_G(e_N)$.

The $\gamma\text{-function}$

Definition/Proposition

Let (G, N, \odot) be a skew bracoid and $g \in G$. The map $\gamma : G \rightarrow \text{Perm}(N)$ given by

$$\gamma^{(g)}\eta = (g \odot e_N)^{-1}(g \odot \eta)$$

is in fact a group homomorphism with image contained in Aut(N).

We call this map the γ -function of the skew bracoid.

Definition

Let (G, N, \odot) be a skew bracoid. A subgroup M of N is a left ideal of (G, N) if and only if $\gamma^{(g)}\mu \in M$ for all $g \in G$ and all $\mu \in M$. When M is also normal in N, M is an ideal of (G, N).

Skew Bracoids in the Holomorph

Proposition

Let N be a group. We have a correspondence between

- skew bracoids (G, N, \odot) ,
- and transitive subgroups A of Hol(N).

Sketch Proof.

Let (G, N, \odot) be a skew bracoid. The image of the map $\Gamma : G \to Hol(N)$ given by $g \mapsto (g \odot e_N, \gamma(g))$ is a transitive subgroup of Hol(N).

Conversely any transitive subgroup A of Hol(N) can be packaged up with N itself to form a skew bracoid (A, N, \odot) , with all the obvious operations.

Recall that passing to the holomorphs kills off any kernel in the action, leaving the action faithful and the skew bracoid *reduced*.

Proposition

Let $\mathcal{B} = (G, N, \odot)$ and $\mathcal{B}' = (G', N, \odot')$ be reduced skew bracoids, corresponding to A and A' respectively in Hol(N). We have that \mathcal{B} and \mathcal{B}' are isomorphic as skew bracoids if and only if A is conjugate to A' via an automorphism of N.

Some Familiar Concepts Re-framed

Let (A, N) be a skew bracoid with $A \subseteq Hol(N)$.

- The stabiliser $\text{Stab}_A(e_N)$ is precisely the purely automorphism elements of A, we denote this S_A .
- Let $[\eta, \alpha] \in A$ and $\mu \in N$. We have

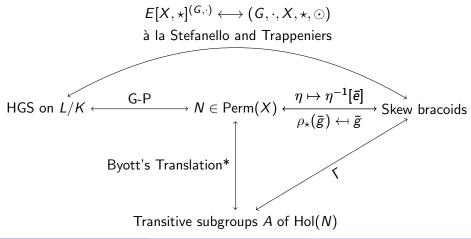
$$egin{aligned} &\gamma([\eta,lpha])\mu=([\eta,lpha]e_{\mathsf{N}})^{-1}([\eta,lpha]\mu)\ &=\eta^{-1}\etalpha(\mu)\ &=lpha(\mu), \end{aligned}$$

so the image of γ consists of the automorphisms of N that appear in an element of A.

• A left ideal is then a subgroup M of N such that the automorphisms $\alpha \in \gamma(A) \subseteq \operatorname{Aut}(N)$ restrict to automorphisms of M.

The Various Correspondences

Let L/K be a finite, separable extension of fields with Galois closure E. Let G = Gal(E/K) and S = Gal(E/L), and X = G/S.



Again, let L/K be a finite, separable extension of fields with Galois closure *E*. Let G = Gal(E/K) and S = Gal(E/L), and X = G/S.

Theorem

Suppose $E[X, \star]^G$ is a Hopf-Galois structure on L/K, corresponding to the skew bracoid (G, X, \odot) . Let G' be a subgroup of G, containing S, the following are equivalent

- $E^{G'}$ appears in the image of the HGC for $E[X, \star]^G$,
- $G' \odot e_N$ is a left ideal of (G, X, \odot) .

It is already well known that if the structure is almost classical then the HGC is surjective, but other results in the separable case are scarce.

Translating " $G' \odot e_N$ is a left ideal of (G, X, \odot) " to our holomorph formulation with $A = \Gamma(G)$ and $A' = \Gamma(G')$, we would be asking whether

- $A'e_N$ is a subgroup of N,
- for which the elements of γ(A) ⊆ Aut(N) restrict to automorphisms of A'e_N.

Hopf-Galois Structure	Skew Bracoid	Holomorph
Almost classical	$G\cong H times S$	$A \cong B \rtimes S_A$
extension		
Almost classical	Almost classical	$[N, id] \subseteq A$
structure		
E ^{G'} in image	$G' \odot e_N$	$A'e_N\leq N$,
of HGC	left ideal	$\gamma(A) \subseteq Aut(A'e_N)$

An Example

Let $N = \langle \sigma, \tau : \sigma^p = \tau^q = e, \tau \sigma = \sigma \tau \rangle \cong C_{pq}$ with p, q odd primes and p = 2q + 1. Let $\alpha, \beta, \gamma, \delta$ be generators for Aut(N) where α, β fix $\tau; \delta, \gamma$ fix σ ; and $\operatorname{ord}(\alpha) = q, \operatorname{ord}(\beta) = 2, \operatorname{ord}(\gamma) = 2^r, \operatorname{ord}(\delta) = s (q - 1 = 2^r s)$.

	Order	Parameters	Group
(1)	$2^{c+1}dpq^2$	$0 \le c \le r, d \mid s$	$N \rtimes \langle \alpha, \beta, \gamma^{2^{r-c}}, \delta^{s/d} \rangle$
(2)	2 ^c dpq ²	$0 \le c \le r, d \mid s$	$N \rtimes \langle \alpha, \gamma^{2^{r-c}}, \delta^{s/d} \rangle$
(3)	2 ^c dpq ²	$1 \le c \le r, d \mid s$	$N \rtimes \langle \alpha, \beta \gamma^{2^{r-c}}, \delta^{s/d} \rangle$
(4)	$2^{c+1}dpq$	$0 \le c \le r, d \mid s$	$N \rtimes \langle \beta, \gamma^{2^{r-c}}, \delta^{s/d} \rangle$
(5)	2 ^c dpq	$0 \le c \le r, d \mid s$	$N \rtimes \langle \gamma^{2^{r-c}}, \delta^{s/d} \rangle$
(6)	2 ^c dpq	$1 \le c \le r, d \mid s$	$N \rtimes \langle \beta \gamma^{2^{r-c}}, \delta^{s/d} \rangle$
(7)	2 <i>pq</i>	$1 \leq t \leq q-1$	$\langle \sigma, [\tau, \alpha^t] \rangle \rtimes \langle \beta \rangle$
(8)	pq	$1 \leq t \leq q-1$	$\langle \sigma, [\tau, \alpha^t] \rangle$

	Order	Parameters	Group
(8)	pq	$1 \le t \le q-1$	$\langle \sigma, [\tau, \alpha^t] \rangle$

Let A be as in (8). The proper subgroups of A are then $\{[e, id]\}, \langle \sigma \rangle, \langle [\tau, \alpha^t] \rangle$ and $\langle [\sigma^i \tau, \alpha^t] \rangle$ for $1 \leq i < p$.

Taking $A' = \langle [\sigma \tau, \alpha^t] \rangle$ and writing σ^g for $\alpha(\sigma)$, we get

$$A'e_{N} = \left\{\sigma^{\sum_{j=0}^{k-1}g^{j}}\tau^{k} \mid 1 \le k \le q\right\}$$

which is not a subgroup of N. Hence the Hopf-Galois correspondence is not surjective.

	Order	Parameters	Group
(7)	2pq	$1 \leq t \leq q-1$	$\langle \sigma, [\tau, \alpha^t] \rangle \rtimes \langle \beta \rangle$

With A as in (7) however, we are forced to include $\langle \beta \rangle = S_A$ in our A'. This β allows us to disentangle a power of σ from $[\sigma^i \tau, \alpha^t]$ so that we would end up with the whole of A. The proper subgroups of A containing $\langle \beta \rangle$ are then $\langle \beta \rangle$, $\langle \sigma \rangle \rtimes \langle \beta \rangle$, $\langle [\tau, \alpha^t] \rangle \rtimes \langle \beta \rangle$.

In (7) then, the N parts of each possible A' form subgroups of N, and any automorphisms will naturally restrict to these subgroups. Hence the Hopf-Galois correspondence is surjective.

Thank you for your attention!

References I

- Nigel P. Byott and IM-L, Hopf-Galois structures on non-normal extensions of degree related to Sophie Germain primes, Journal of Pure and Applied Algebra 226 (2022), no. 3, 106869.
- Nigel P. Byott, Uniqueness of Hopf Galois structure for separable field extensions, Communications in Algebra 24 (1996), no. 10, 3217–3228.
- Teresa Crespo, Anna Rio, and Montserrat Vela, On the Galois Correspondence Theorem in Separable Hopf Galois Theory, Publicacions Matemàtiques 60 (2016), no. 1, 221 – 234.
- Andrew Darlington, *Hopf-Galois structures on separable field extensions of degree pq*, 2023.
- Cornelius Greither and Bodo Pareigis, *Hopf Galois theory for separable field extensions*, Journal of Algebra **106** (1987), no. 1, 239–258.

References II

- L. Guarnieri and L. Vendramin, Skew braces and the Yang-Baxter equation, Mathematics of Computation 86 (2017), no. 307, 2519–2534.
- IM-L and Paul J. Truman, *Skew bracoids*, 2023.
- Alan Koch and Paul J. Truman, Opposite skew left braces and applications, Journal of Algebra 546 (2020), 218–235.
- Lorenzo Stefanello and Senne Trappeniers, On the connection between Hopf–Galois structures and skew braces, Bulletin of the London Mathematical Society (2023).
- Agata Smoktunowicz and Leandro Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), Journal of Combinatorial Algebra 2 (2018), no. 1, 47–86 (English).